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Abstract and Introduction 

Abstract 

Aggressive fluid resuscitation to achieve a central venous pressure (CVP) greater than 8 mm Hg has 
been promoted as the standard of care, in the management of patients with severe sepsis and septic 
shock. However recent clinical trials have demonstrated that this approach does not improve the outcome 
of patients with severe sepsis and septic shock. Pathophysiologically, sepsis is characterized by 
vasoplegia with loss of arterial tone, venodilation with sequestration of blood in the unstressed blood 
compartment and changes in ventricular function with reduced compliance and reduced preload 
responsiveness. These data suggest that sepsis is primarily not a volume-depleted state and recent 
evidence demonstrates that most septic patients are poorly responsive to fluids. Furthermore, almost all 
of the administered fluid is sequestered in the tissues, resulting in severe edema in vital organs and, 
thereby, increasing the risk of organ dysfunction. These data suggest that a physiologic, 
hemodynamically guided conservative approach to fluid therapy in patients with sepsis would be prudent 
and would likely reduce the morbidity and improve the outcome of this disease. 

Introduction 

In the 19th century, patients with cholera dying from hypovolemic shock were treated by venesection or 
blood-letting.[1,2] This treatment was considered the standard of care for this disorder. In the first part of 
the 21st century patients with septic shock were treated with massive amounts of crystalloids, 
approaching 17 liters in the first 72 h of hospitalization.[3,4] This approach was considered the standard of 
care and endorsed by International Guidelines.[5–7] Clearly, these treatment approaches failed to 
appreciate the pathophysiological changes of both disorders and that the prescribed treatments were 
harmful. Cholera is a disease associated with profound volume depletion through diarrhea that requires 
replacement with IV fluids.[1,2] Severe sepsis and septic shock however, are not associated with volume 
loss. Sepsis is characterized by arterio- and venodilation together with microcirculatory and myocardial 
dysfunction, with septic patients being poorly responsive to fluid administration. Nevertheless, aggressive 
fluid resuscitation to achieve a central venous pressure (CVP) greater than 8 mm Hg ('Early Goal 
Directed Therapy' - EGDT), has been considered the standard of care in the management of patients with 
severe sepsis and septic shock.[5–7] However, recent multicenter clinical trials (ProCESS, ARISE and 
PROMISE) and a meta-analysis of EGDT have demonstrated that this approach does not improve the 
outcome of patients with severe sepsis and septic shock.[8–11] This article reviews the hemodynamic 
changes associated with sepsis and provides a rational approach to fluid management in this complex 
disorder. 

Pertinent Normal Cardiovascular Physiology 

The amount of blood pumped out of the heart (cardiac output) is equivalent to venous return (volume 
entering the right atrium).[12] According to Guyton, venous return is determined by the pressure gradient 
between the peripheral veins and the right atrium (CVP).[13] The venous system can be divided into two 
theoretical compartments, the unstressed and stressed volume.[14] The intravascular volume that fills the 
venous system to the point where intravascular pressure starts to increase is called unstressed volume, 
whereas the volume that stretches the veins and causes intravascular pressure to increase is called the 
stressed volume. The mean circulatory filling pressure (MCFP) is conceptualized as the pressure 
distending the vasculature, when the heart is stopped (zero flow) and the pressures in all segments of the 
circulatory system have equalized.[14,15] The stressed venous system is the major contributor to the 
MCFP.[14,15] The MCFP in humans is normally in the range of 8–l0 mm Hg.[14,15] The MCFP is the major 
determinant of venous return. 

The venous system has a large vascular capacitance and a constant compliance in which an increased 
blood volume is associated with a relatively small change in the MCFP.[14] However, because of the 
restraining effects of the pericardium and cardiac cytoskeleton, the diastolic compliance of the normal 
heart (both left and right ventricles) reduces as distending volume increases; consequently, with large 
volume fluid resuscitation, the cardiac filling pressures (particularly on the right side, i.e. CVP) increase 
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faster than the MCFP, decreasing the gradient for venous return.[16–18] Organ blood flow is determined by 
the difference in the pressure between the arterial and venous sides of the circulation. The mean arterial 
pressure (MAP) minus the CVP is therefore the overall driving force for organ blood flow. A high CVP 
therefore decreases the gradient for venous return, while at the same time decreasing organ driving 
pressure and therefore blood flow. Venous pressure has a much greater effect on microcirculatory flow 
than the MAP; provided that the MAP is within an organ's autoregulatory range, the CVP becomes the 
major determinant of capillary blood flow.[19,20] 

According to the Frank-Starling principle, as left-ventricular (LV) end-diastolic volume (i.e. preload) 
increases, LV stroke volume (SV) increases until the optimal preload is achieved, at which point the SV 
remains relatively constant.[21] This optimal preload is related to the maximal overlap of the actin-myosin 
myofibrils. Fluid administration will only increase SV if two conditions are met, namely: i) that the fluid 
bolus increases the MCFP more than it increases the CVP, thereby increasing the gradient for venous 
return, and ii) that both ventricles are functioning on the 'ascending limb' of the Frank-Starling curve.[22,23] 

The vascular endothelium is coated on the luminal side by a web of membrane-bound glycoproteins and 
proteoglycans known as the endothelial glycocalyx.[24–26] The glycocalyx plays a major role as a vascular 
barrier, preventing large macromolecules moving across the endothelium, preventing leucocyte and 
platelet aggregation and limiting tissue edema. An intact endothelial glycocalyx is a prerequisite of a 
functioning vascular barrier.[27] Increased cardiac filling pressures after aggressive fluid resuscitation 
increase the release of natriuretic peptides.[28,29] Natriuretic peptides cleave membrane-bound 
proteoglycans and glycoproteins (most notably syndecan-1 and hyaluronic acid) off the endothelial 
glycocalyx.[30–32] Damage to the glycocalyx profoundly increases endothelial permeability. In addition, 
increased natriuretic peptides inhibit the lymphatic propulsive motor activity reducing lymphatic 
drainage.[33–35] 

Vascular Dysfunction With Sepsis 

Septic shock is primarily a vasoplegic state with arterial and venous dilatation, as a result of failure of the 
vascular smooth muscle to constrict.[36] Vasoplegic shock is believed to be because of increased 
expression of inducible nitric oxide synthetase with increased production of nitric oxide (NO), activation of 
KATP channels resulting in hyperpolarization of the muscle cell membrane, increased production of 
natriuretic peptides (which act synergistically with NO) and a relative vasopressin deficiency.[36] Arterial 
dilatation results in systemic hypotension. However, more importantly, profound venodilation occurs in the 
splanchnic and cutaneous vascular beds increasing the unstressed blood volume, decreasing venous 
return and cardiac output.[14,15] As approximately 70% of the blood volume is within the venous system, 
changes in venous blood volume play a major role in determining venous return.[15] 

Sepsis is characterized by increased expression and activation of endothelial adhesion molecules with 
adhesion and activation of platelets, leucocytes and mononuclear cells and activation of the coagulation 
cascade.[37] This results in a diffuse endothelial injury, microvascular thrombosis, gaps between the 
endothelial cells (paracellular leak) and shedding of the endothelial-glycocalyx.[38,39] The combination of 
these mechanisms contributes to a reduction in functional capillary density, heterogeneous abnormalities 
in microcirculatory blood flow and increased capillary permeability.[40,41] 

Cardiac Changes With Sepsis 

Myocardial depression in patients with septic shock was first described in 1984 by Parker and 
colleagues[42] using radionuclide cineangiography. In a series of 20 patients, these investigators reported 
a 50% incidence of LV systolic dysfunction. Notably, in this study the initial ejection fraction and 
ventricular volumes were normal in non-survivors and these indices did not change during serial studies; 
it is likely that these patients had significant diastolic dysfunction. The initial studies evaluating cardiac 
function in sepsis focused on LV systolic function. However, LV diastolic dysfunction has emerged as a 
common finding in patients with severe sepsis and septic shock.[43] Adequate filling during diastole is a 
crucial component of effective ventricular pump function. Diastolic dysfunction refers to the presence of 
an abnormal LV diastolic distensibility, filling, or relaxation, regardless of LV ejection fraction. 
Predominant diastolic dysfunction appears to be at least twice as common as systolic dysfunction in 
patients with sepsis.[43] In the largest study to date (n=262), Landesberg and colleagues44 reported 
diastolic dysfunction in 54% of patients with sepsis while 23% of patients had systolic dysfunction. Brown 
and colleagues45 performed serial echocardiograms in 78 patients with severe sepsis or septic shock. In 
this study 62% of patients had diastolic dysfunction on at least one echocardiogram. Unlike systolic LV 
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dysfunction, diastolic dysfunction is an important prognostic marker in patients with sepsis.[43–45] Diastolic 
dysfunction is becoming increasing recognized in the community, particularly in patients with 
hypertension, diabetes, obesity and with advancing age.[46–48] These conditions are associated with an 
increased risk of sepsis and may therefore further increase the prevalence and severity of diastolic 
dysfunction in patients with sepsis. Patients' with diastolic dysfunction respond very poorly to fluid 
loading.[44] This was demonstrated in a landmark study published by Ognibene and colleagues[49] in 1988, 
who reported an insignificant increase LV stroke work index and LV end-diastolic volume index in patients 
with septic shock who received a fluid challenge. In these patients, fluid loading will increase cardiac 
filling pressures, increase venous and pulmonary hydrostatic pressures with the increased release of 
natriuretic peptides with minimal (if any) increase in SV. Furthermore, as reviewed above, aggressive fluid 
resuscitation in itself causes diastolic dysfunction which will compound the pre-existing and/or sepsis-
induced diastolic dysfunction. 

Fluid Responsiveness 

The widely accepted rationale behind fluid resuscitation in sepsis is to improve cardiac output and organ 
perfusion, thereby limiting organ dysfunction. Logically, therefore, the only reason to resuscitate a patient 
with fluid (give a fluid bolus) would be to cause a clinically significant increase in SV. A patient whose SV 
increases by 10–15% after a fluid challenge (250–500 ml) is considered to be a fluid responder.[50] 
Nonetheless, according to the Frank-Starling principle, as the preload increases, SV increases until the 
optimal preload is achieved, at which point the SV remains relatively constant.[50] If the fluid challenge 
does not increase SV, volume loading serves the patient no useful benefit and is likely harmful. The 
adverse effects of fluid loading when a patient is on the flat portion of the Frank-Starling curve, is related 
to the curvilinear shape of the left ventricular pressure-volume curve, resulting from altered diastolic 
compliance at higher filing pressures.[16–18] As the patient reaches the plateau of his/her Frank-Starling 
curve, atrial pressures increase, increasing venous and pulmonary hydrostatic pressures which combined 
with the increased release of natriuretic peptides, causes a shift of fluid into the interstitial space, with an 
increase in pulmonary and tissue edema (see Fig. 1). Tissue edema impairs oxygen and metabolite 
diffusion, distorts tissue architecture, impedes capillary blood flow and lymphatic drainage and disturbs 
cell-cell interactions.[52,53] Increased right atrial pressure (CVP) is transmitted backwards increasing 
venous pressure in vital organs, with a profound effect on microcirculatory flow and organ function.[19] The 
kidney is particularly affected by increased venous pressure, which leads to increased renal subcapsular 
pressure and reduced renal blood flow and glomerular filtration rate.[52] 

 
Figure 1. 

Superimposition of the Frank-Starling and Marik-Phillips curves demonstrating the effects of increasing 
preload on stroke volume and lung water in a patient who is pre-load responsive (a) and non-responsive 
(b). With sepsis the EVLW curve is shifted to the left.51 EVLW=extra-vascular lung water; CO=cardiac 
output; SV=stroke volume. MCFP=mean circulating filling pressure. Reproduced with permission from the 
British Journal Anaesthesia; 2014;12:620–622. 

Fluid Responsiveness and the Hemodynamic Effects of Fluids in Patients With Sepsis 

Studies in heterogeneous groups of critically ill and injured patients and those undergoing surgery have 
reproducibly demonstrated that only about 50% of hemodynamically unstable patients are fluid 
responders.[50,54–56] This is a fundamental concept which is not widely appreciated,[57,58] and challenges 
the widely accepted notion that fluid administration is the 'cornerstone of resuscitation'.[5–7,59] As a result of 
the effects of sepsis on the venous capacitance vessels and myocardial function, it is likely that less than 
40% of hypotensive patients with severe sepsis or septic shock are 'fluid responders'.[60–62] 
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The goal of fluid resuscitation is to increase the stressed blood volume and MCFP more than the CVP, 
and thereby increase the pressure gradient for venous return. However the ability of crystalloids (the most 
common fluid used for the resuscitation of patients with sepsis) to expand the intravascular volume is 
poor. Chowdhury and colleagues63 reported that in healthy volunteers, only 15% of a crystalloid bolus 
remained in the intravascular space at 3 h, with 50% of the infused volume being in the extravascular 
extracellular compartment. In patients with sepsis and in experimental models, less than 5% of a 
crystalloid bolus remains intravascular an hour after the end of the infusion.[64,65] It is therefore likely that 
the hemodynamic effects of a fluid bolus (in the fluid responders) are short-lived, with the net effect being 
the shift of fluid into the interstitial compartment with tissue edema. Nunes and colleagues[66] 
demonstrated that in fluid responders, the SV returned to baseline 60 min after a crystalloid bolus. 
Glassford and colleagues[67] performed a systematic review which examined the hemodynamic response 
of fluid boluses in patients with sepsis. These authors reported that while the mean arterial pressure 
(MAP) increased by 7.8 (3.8) mm Hg immediately after the fluid bolus, the MAP had returned close to 
baseline at one h with no increase in urine output. In a retrospective analysis of the ARDSnet Fluid and 
Catheter Treatment Trial (FACTT),[68] Lammi and colleagues62 examined the physiological effect of 569 
fluid boluses (15 ml kg−1; 1025±243 ml) in 127 patients (the majority of whom were septic), randomized to 
the pulmonary artery catheter arm of the study. The FACTT trial required reassessment of the 
haemodynamic profile one h after the fluid bolus, if the indication for fluids was shock, ineffective 
circulation, or low urine output and four h if the indication was a low pulmonary artery occlusion pressure 
(PAOP).[68] Fifty-eight percent of fluid boluses were given for shock or poor urine output/ineffective 
circulation, with 42% of boluses given for a low PAOP. In this study, only 23% of patients were fluid 
responders (increase in CI > 15%). There was a small increase in the MAP (78.3 16.4 to 80.4 16.5 mm 
Hg) while the urine output did not change in the 1–4 h after the fluid bolus. 

Monge-Garcia and colleagues[69] measured the effects of a fluid bolus on arterial load in patients with 
septic shock. In this study 67% of patients were fluid responders, however the MAP increased in only 
44% of these patients (pressure responder). Overall there was a significant reduction in effective arterial 
elastance (Ea) and systemic vascular resistance (SVR), this effect being most marked in the pre-load 
responders who were pressure non-responders. Additional studies have demonstrated a decrease in 
SVR after fluid resuscitation in patients with sepsis.[70,71] This suggests that fluid boluses should be 
considered vasodilator therapy, in patients with sepsis and that aggressive fluid resuscitation may 
potentiate the hyperdynamic state. 

In summary, these studies demonstrate that the majority of patients with severe sepsis and septic shock 
are not fluid responders. Furthermore, the hemodynamic changes in the fluid responders are small, short-
lived and likely to be clinically insignificant. However, aggressive fluid resuscitation will likely have 
adverse haemodynamic consequences including an increase in cardiac filling pressures, damage to the 
endothelial glycocalyx, arterial vasodilation and tissue edema. Consequently, the concept that aggressive 
fluid resuscitation is the 'cornerstone of resuscitation' of patients with severe sepsis and septic shock 
needs to be reconsidered.[5–7,59] Indeed, it is likely that aggressive fluid resuscitation increases the 
morbidly and mortality of patients with sepsis (see section below). Nevertheless the updated Surviving 
Sepsis Campaign Guidelines, published after the publication of the ProCESS, ARISE and PROMISE 
studies[8–10] mandate the administration of '30 ml kg−1 crystalloid for hypotension or lactate ≥4 mmol 
Litre−1' within 3 h of presentation to hospital.[72] This recommendation is problematic as the majority of 
hypotensive patients with septic shock will not respond to fluids; this approach is likely to lead to 'salt 
water drowning' with an increase in the morbidity and mortality of these patients.[73] Furthermore, as 
discussed below, an increased blood lactate is unlikely to be associated with anaerobic metabolism, or 
inadequate oxygen delivery, and attempts at increasing oxygen delivery do not increase oxygen 
consumption or lower lactate concentrations. Indeed such an approach has been demonstrated to 
increase the risk of death of critically ill patients.[74] 

These data suggest that only patients who are fluid responsive should be treated with fluid boluses. 
Furthermore, the patients' fluid responsiveness and the risk/benefit ratio of fluid administration needs to 
be determined before each fluid bolus.[75] As the hemodynamic response to a fluid challenge is very short-
lived and large fluid boluses (20–30 ml kg−1) are associated with severe volume overload, the mini-fluid 
bolus approach (200–500 ml) to fluid therapy is recommended.[76] The passive leg raising maneuver 
(PLR) and the fluid bolus test coupled with real-time SV monitoring, are currently the only techniques 
which have an acceptable degree of clinical accuracy, which can be used for determining fluid 
responsiveness.[51] Because of its ease of use, simplicity, high diagnostic accuracy, inherent safety and 
short procedure time (less than 5 min to perform) the PLR is the preferred method to assess fluid 
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responsiveness in the emergency department, hospital ward and ICU.[51,75] The PLR maneuver is 
performed by lifting the legs passively from the horizontal position and is associated with the gravitational 
transfer of blood (about 300 ml) from the lower limbs and abdomen toward the intrathoracic 
compartment.[75,77,78] The PLR manoeuvre has the advantage of reversing its effects once the legs are 
returned to the horizontal position.[75,79,80] Therefore, the PLR manoeuvre is considered a reversible or 
'virtual' fluid challenge. The ability of the PLR manoeuvre to serve as a test of preload responsiveness 
has been confirmed in multiple studies performed in critically ill patients. A meta-analysis, which pooled 
the results of eight studies, confirmed the excellent value of PLR to predict fluid responsiveness in 
critically ill patients with a global area under the ROC curve of 0.95 (95% CI, 0.92–0.95).[81] In an updated 
meta-analysis which evaluated 21 studies, we report a pooled ROC AUC of 0.93–0.95 (Monnet X, Marik 
P, Teboul JL; submitted for publication). As the maximal haemodynamic effects of PLR occur within the 
first min of leg elevation,[75,80] it is important to assess these effects with a method able to track changes in 
cardiac output or SV on a real-time basis. It is important to note that the change in bp after a PLR or fluid 
challenge is a poor guide to fluid responsiveness; SV may increase without a significant change in bp.[70] 
Furthermore, unlike techniques to determine fluid responsiveness based on heart-lung interactions, the 
PLR manoeuvre can be performed in spontaneously breathing patients, patients with cardiac arrhythmias 
and those receiving low tidal volume ventilation.[75,51] 

The chest radiograph, CVP, central venous oxygen saturation (ScvO2) and ultrasonography, including the 
vena-caval collapsibility index, have limited value in guiding fluid management and should not be used for 
this purpose.[54,82–86] Furthermore, it has been well established that physical examination cannot be used 
to predict fluid responsiveness and physical examination is unreliable for estimating intravascular volume 
status.[87] It is therefore very troubling that the updated Surviving Sepsis Campaign Guidelines which are 
now federally mandated in the USA (SEP-1 Early Management Bundle, #0500 Severe Sepsis and Septic 
Shock: management Bundle) require either a 'focused exam by a licensed independent practitioner', or 
measurement of the CVP or ScvO2, or bedside cardiovascular ultrasound, to assess the volume status of 
the patient with severe sepsis and septic shock.[88] It should be noted that the area under the receiver 
operator characteristic (ROC) curve of the CVP, for predicting fluid responsive is approximately 0.5, which 
is considered a 'completely useless test'.[54,89,90] Furthermore, it is important to emphasize that a normal 
CVP is between 0–2 mm Hg; this is necessary to ensure adequate venous return and cardiac output (as 
discussed above). In addition, while the change in CVP in response to a fluid challenge is still widely 
promoted as a method to guide fluid therapy,[57] this technique has no physiologic basis and is unable to 
predict fluid responsiveness with any degree of accuracy.[54,91] Furthermore, it should be noted that with 
the exception of measuring dynamic changes in the carotid Doppler peak velocity,[86,92,93] bedside 
ultrasound including the inferior vena caval distensibility index cannot accurately predict fluid 
responsiveness.[51,82,85,86] It is somewhat astonishing that the ScvO2 is still being recommended to guide 
the resuscitation of critically ill septic patients and is being used as an indicator of the quality of care 
delivered.[72,88] Monitoring the ScvO2 in patients with sepsis has no scientific basis, as patients with sepsis 
usually have a normal or increased ScvO2,[94,95] and a high (ScvO2 > 90%) rather than low ScvO2 has 
been demonstrated to be an independent predictor of death.[96] Three large randomized controlled trials 
(ProCESS, ARISE and PROMISE) have now demonstrated that titrating therapy to a ScvO2 > 70% does 
not improve outcome,[8–10] but rather increases the risk of organ dysfunction, length of ICU stay and 
increased use of resources and costs.[10] These observations must lead to the conclusion that the original 
EGDT study was not scientifically valid and that no aspect of this study should be used to guide the 
management of patients with severe sepsis and septic shock.[3,97,98] 

In addition to targeting a CVP greater than 8 mm Hg, the Surviving Sepsis Campaign guideline 
recommends 'targeting resuscitation to normalize lactate in patients with elevated lactate levels as a 
marker of tissue hypoperfusion'.[7] This recommendation is based on the notion that an elevated lactate is 
a consequence of tissue hypoxia and inadequate oxygen delivery.[95] However, these assertions are likely 
wrong.[99] Hotchkiss and Karl[100] in a seminal review published over 20 yr ago, demonstrated that cellular 
hypoxia and bioenergetic failure does not occur in sepsis. It has now been well established that 
epinephrine released as part of the stress response in patients with severe sepsis, stimulates Na+ K+-
ATPase activity. Increased activity of Na+ K+ ATPase leads to increased lactate production under well-
oxygenated conditions in various cells, including erythrocytes, vascular smooth muscle, neurons, glia, 
and skeletal muscle.[101,102] While sepsis is considered to be a 'hypermetabolic' condition oxygen 
consumption and energy expenditure are broadly comparable with that of normal people, with energy 
expenditure decreasing with increasing sepsis severity.[103–105] Therefore, there is no requirement that 
oxygen delivery increase with sepsis. Indeed, increasing oxygen delivery in patients with sepsis does not 
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increase oxygen consumption nor decrease lactate concentrations.[106,107] The critical oxygen delivery 
threshold for humans (both septic and non-septic) is approximately 3.8 (1.5) ml min−1 kg−1 (270 ml min−1 
in a 70 kg patient).[108] These values translate into a cardiac output of approximately 2 Litre min−1; it is 
likely that only pre-terminal moribund patients with septic shock would have such a low cardiac output. 

Evidence Supporting the Deleterious Effects of Aggressive Fluid Resuscitation 

The harmful effects of aggressive fluid resuscitation on the outcome of sepsis are supported by 
experimental studies and data accumulated from clinical trials.[109,110] Multiple clinical studies have 
demonstrated an independent association between an increasingly positive fluid balance and increased 
mortality in patient with sepsis.[29,111–120] The most compelling data that fluid loading in sepsis is harmful, 
comes from the landmark 'Fluid Expansion as Supportive Therapy (FEAST)' study performed in 3141 
sub-Saharan children with severe sepsis.[121] In this randomized study, aggressive fluid loading was 
associated with a significantly increased risk of death. After the Rivers' Early Goal Directed Therapy 
trial,[3] which formed the basis for the concept of early aggressive fluid resuscitation, a number of EGDT 
studies have been published.[4,8–10,122] An analysis of these studies demonstrates a marked reduction in 
mortality over this time period (see Fig. 2). While all these studies emphasized the early use of 
appropriate antibiotics, the decline in the amount of fluids administered in the first 72 h is striking. 
Furthermore as illustrated in Fig. 3 there is a very strong correlation between the amount of fluid 
administered (in first 6 h) and the target CVP. It should be noted that the CVP in the usual arm of both the 
ARISE (The Australasian Resuscitation in Sepsis Evaluation) and ProMISe (Protocolised Management in 
Sepsis) trials was greater than 10 mm Hg, being almost identical to the EGDT arm, and with almost an 
identical amount of fluid being administered in the usual arm, as in the active EGDT arm in both 
studies.[9,10] Clinicians seem compelled to give fluid when the CVP is less than 8 mm Hg; the only solution 
to this pervasive problem is to stop measuring the CVP. 

 
Figure 2. 

Fluid administered between enrolment and 72 h and 90-day mortality in the control arm of the Early Goal 
Directed Therapy (EGDT) Studies performed between 2001 and 2015. APACHE II=APACHE II Severity 
of illness scoring system (0–71). 

 
Figure 3. 

Fluid administered between enrolment and 6 h and central venous pressure (CVP) at h in the Early Goal 
Directed arm of the EGDT studies performed between 2001 and 2015. 

A Haemodynamically-guided Conservative Fluid Resuscitation Strategy 
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These data strongly support a hemodynamically-guided fluid resuscitation strategy in patients with severe 
sepsis and septic shock. Furthermore, from an evolutionary point of view, humans have evolved to deal 
with hypovolemia and not hypervolemia. Large fluid boluses may counter the life preserving homeostatic 
mechanisms in unstable critically ill patients, increasing the risk of death.[123] In some patients, 
hypotension and tachycardia do resolve with limited fluid resuscitation. It is likely that many of these 
patients have super-added dehydration as a result of poor oral intake and a delay in seeking medical 
attention. However, fluids alone will not reverse the hemodynamic instability of patients with more severe 
sepsis; in these patients, fluids alone are likely to exacerbate the vasodilatory shock and increase the 
capillary leak and tissue edema. Based on these data, the initial resuscitation of patients with septic 
shock should logically include at most 500 ml boluses of crystalloid (Ringer's lactate), to a maximum of 
about 20 ml kg−1.[124] Ideally, fluid resuscitation should be guided by the determination of fluid 
responsiveness.[50,51] Normal saline is an 'unphysiologic' solution that should be avoided, except in 
patients with acute neurological injuries. Normal saline causes a hyperchloraemic metabolic acidosis;[125–

128] it decreases renal blood flow[63] increasing the risk of renal failure.[129] In patients with sepsis, the use 
of normal saline as compared with physiologic salt solutions, has been associated with an increased risk 
of death.[130] Similarly, synthetic starch solutions increase the risk of renal failure and death in patients 
with sepsis and should be avoided.[131,132] 

The septic patient with an intra-abdominal catastrophe, who requires urgent surgical intervention, 
represents a sub-group of patients that may require more aggressive fluid resuscitation. However, overly 
aggressive fluid resuscitation will likely result in intra-abdominal hypertension, which is associated with a 
high risk of complications and death.[133,134] In these patients continuous SV monitoring is essential and 
ongoing fluid requirements should be guided by the trend in the SV and the hemodynamic response to a 
mini-fluid bolus. In addition, perioperative, intra-abdominal pressure monitoring is required in these 
patients.[133] 

Norepinephrine should be initiated in those patients who remain hypotensive (MAP < 65 mm Hg) despite 
this initial, limited fluid strategy.[124,135] Norepinephrine increases arterial vascular tone increasing bp and 
organ blood flow. Venous capacitance vessels are much more sensitive to sympathetic stimulation than 
are arterial resistance vessels, consequently low dose α-1 agonists cause greater veno- than arterio-
constriction.[136] In septic patients, α-1 agonists mobilize blood from the unstressed reservoirs in the 
splanchnic circulation and skin, thereby increasing venous return and cardiac output. In a porcine 
endotoxic shock model, Datta and Magder[137] demonstrated that norepinephrine increased the MCFP, 
leading to an increase in venous return. Similarly in patients with septic shock, Persichini and 
colleagues[138] demonstrated that deceasing the dose of norepinephrine, decreased the MCFP with a 
decrease in venous return and cardiac output. In a cohort of patients with septic shock Kozieras and 
colleagues[139] demonstrated that norepinephrine increased cardiac index, systemic vascular resistance 
and central blood volumes (intrathoracic blood volume, global end-diastolic volume), as measured by 
transpulmonary thermodilution. In this study extra-vascular lung water (EVLW) remained unchanged. 
Hamzaoui and colleagues[140] demonstrated that the early administration of norepinephrine increased 
preload, cardiac output and MAP largely reversing the hemodynamic abnormalities of severe vasodilatory 
shock. Abid and colleagues[141] demonstrated that the early use of norepinephrine in patients with septic 
shock was a strong predictor of survival. These studies demonstrate that in patients with septic shock, the 
early use of norepinephrine restores the stressed blood volume, increasing the MCFP, venous return and 
cardiac output. The increase in the stressed blood volume is as a result of the mobilization of blood, 
rather than the short-lived effect of a volume expander. Therefore unlike fluids, the effect of α-1 agonists 
on venous return is enduring and not associated with tissue edema. α-1 agonists should not be used in 
patients with hypovolemic shock (e.g. cholera) who are already venoconstricted; in this setting, α-1 
agonists will cause severe vasoconstriction, impairing organ blood flow. However, in septic veno- and 
arterio-dilated patients, α-1 agonists increase venous return, increase stroke volume and increase arterial 
tone, thereby increasing organ blood flow.[142–144] Digital and limb ischemia and ischemic skin lesions are 
extremely rare with the use of norepinephrine,[145] occurring usually with high dosages and usually when 
used together with vasopressin.[146,147] Furthermore, uncontrolled disseminated intravascular coagulation 
(DIC) plays a contributing role in these patients.[148] We are unaware of any reported patients with digital 
or limb ischemia associated with the early use of norepinephrine. In our experience the early use of 
norepinephrine appears to reduce the peak and total dose of vasopressors administered. It is noteworthy 
that norepinephrine may be safely given through a well-functioning peripheral venous catheter,[149] 
precluding the requirement for emergent central venous catheterization, which is generally regarded as 
an obstacle to the early use of norepinephrine. In experimental sepsis models, norepinephrine appears 
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preferable to epinephrine and phenylephrine as a first-line therapy in restoring hemodynamic 
stability.[150,151] Dopamine as opposed to norepinephrine is associated with an increased risk of 
arrhythmias and death in patients with sepsis and should be avoided.[152–154] 

Conclusions 

An emerging body of basic science and clinical studies supports the concept of a hemodynamically-
guided, restricted fluid resuscitation strategy in patients with severe sepsis and septic shock. Initial fluid 
resuscitation should be limited and guided by an assessment of fluid responsiveness. Norepinephrine 
increases preload, systemic vascular resistance and cardiac output and its use in patients with persistent 
hypotension is recommended early in the course of septic shock. Early bedside echocardiographic 
assessment of cardiac function is recommended to guide further haemodynamic management. 
Adequately powered, randomized, controlled trials, are urgently required to demonstrate the benefits of 
the early use of norepinephrine and a conservative, haemodynamically-guided fluid resuscitation strategy. 

Sidebar 

Editor's Key Points 

• The authors review, in detail, the physiology of hypo-and hypervolemia, and the effects of 
venodilation and arteriodilation. 

• They contend that universal, aggressive fluid administration in septic shock carries considerable 
risk, and that a hemodynamically-guided, conservative approach is likely to produce better 
outcome. 

• They also argue that early norepinephrine therapy is likely to improve outcome. 
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